
全体概要

- ▶ 次世代産業4分野のイノベーション創出促進
- **参加者間のマッチングや競争的資金の獲得支援**

新技術・新事業開発 プロジェクト化

マッチング
(企業・大学、企業間)

DX (ICT・ロボット) 航空・宇宙 環境・水素等 新エネルギー 健康・医療 大学・高専・研究機関

取り組み

ステップ5 国プロジェクトの獲得支援

ステップ4 成長産業育成のための研究開発支援 成長産業試作開発支援

ステップ3 ビジネスマッチング

ステップ2 コンソでの目標の共有

ステップ1 参加者間ネットワーク強化

ネットワーキング交流会

プロジェクト企画会議

DX (ICT・ロボット)

航空·宇宙

、環境・水素等 新エネルギー

健康-医療

NIRO 公益財団法人 新産業創造研究機構

DX(ICT-ロボット)分野

◎ 自動化ニーズ

- ・生産年齢人口減少への対応 · AI(人工知能)技術の進歩 · 生産性の向上
- ・協働ロボットの登場により、ロボットと人の共存作業が可能
- ・システムインテグレーター(SIer)によるベストフィットソリューションの提供
- ・導入企業のSI能力向上、生産品種変更/カイゼンに活用

◎ IoT活用ニーズ

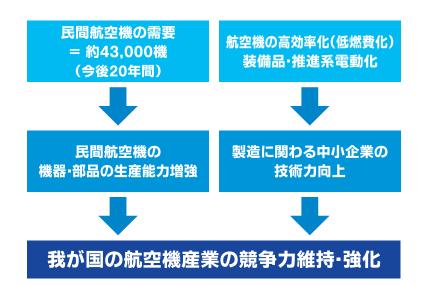
ものづくり現場の悩み

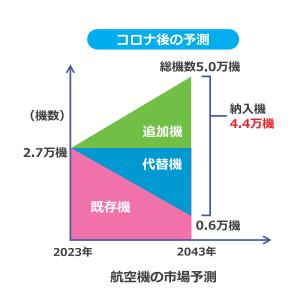
- ✓ 工場の現状が見えない。 (生産の進捗、機械の稼働、作業者の動き)
- 経験と勘に頼っている生産計画を 見直したい。
- ▼ 手書き記録のシステムへの入力が手間。 タイムラグも問題。
- ☑ IoT を活用して品質管理を高度化したい。

製品を高度化したい

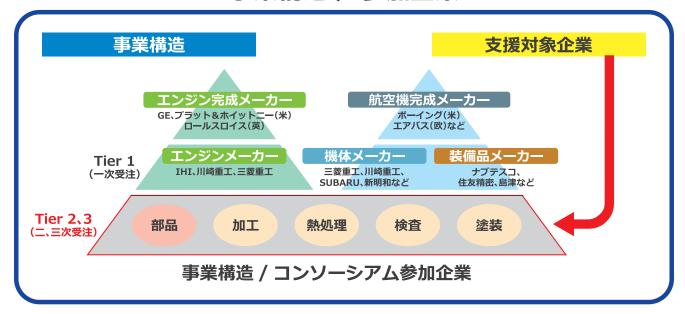
- ◇ 外販製品をインテリジェント化したい。 (IoT 機能搭載、センサー、遠隔監視)
- ◇ 遠隔地の製品の故障診断をしたい。

分科会活動(ロボット分野)


	メンバー数	テーマ名	
1	3	機械加工工場自動化と自社SI能力育成	
2	2	箱詰め作業自動化	
3	3	外観検査自動化	
4	2	ゴム製品切削加工自動化	
5	2	4K作業の高効率遠隔操作方式開発	
6	3	ビジョンを用いた電気品組立自動化	
7	3	中腰作業の軽労化	
8	2	加工機ワーク脱着自動化と自社SI能力育成	
9	3	バーチャルティーチング方式の開発	
10	2	AGV活用	
11	2	樹脂製品の外観検査自動化	
12	3	立体形状物への回路パターン作成	


IoT高度活用研究会

- · IoT活用企業間の情報交流
- ・取り組み(成功・失敗体験)の共有
- ・学びと気づきを自社取り組みに反映



航空·宇宙分野

事業構造 / 参加企業

活動内容

◎ 目標

- ・新技術・新事業に向けた技術課題抽出、研究開発テーマの創出、調査
- ・新技術・新事業実用化、社会実装に向けたプロジェクトの立上げ、競争的資金獲得

◎ 取り組み

- -ニーズのヒアリング、シーズの提示
- ・企業が抱える課題の解決
- ・企業間、企業と学・研究機関とのマッチング

環境·水素等新エネルギー分野

政府方針: 2050年

- 温室効果ガスの排出を全体としてゼロにする
- カーボンニュートラルの実現
- 地域脱炭素

2030年目標

- 温室効果ガス46%削減
- 脱炭素先行地域創出

二次エネルギー関連技術開発

省エネルギー技術開発

再生可能エネルギー技術開発

環境浄化

水素・アンモニア

エネルギー貯蔵

蓄電技術

水力、太陽光、風力、バイオマス

電動化

空気浄化、水浄化

ネットワーキング交流会

- ・脱炭素、水素(大阪との連携)
- 講演テーマ
- ・直流グリッド
- ・太陽光発電 関連

プロジェクト企画会議

- ・水素関連システム
- 話題提供テーマ
 - ・水素関連機器
 - ・植物工場、EV(電気自動車)

健康-医療分野

再生医療

医療周辺機器

ライフサイエンス

ネットワーク活用

AI技術利用

オーラルケア

健康・医療分野の対象領域

(连)从"(达)"。 (连)以"(达)"。 (注)						
自然界の一存在としての自覚と自己実現						
健康維持·増進 Health Promotion	医薬品 / Drug	リハビリテーション Rehabilitation				
食品・農林水産業	非医療機器 / Non Medical Device 医療機器 / Medical Device	メンタルヘルス Mental Health				
Food & Agri., etc.	再生·細胞医療、遺伝子治療 Cell & Regenerative Medicine, etc.	介護·福祉 Care·Welfare				
口腔ケア / Oral Care		<u></u> 障がい者				
サプリ・化粧品	デジタル治療 / Digital Therapeutics	相andicapped				
自然(界の力を活かした)治療 / Nature Therapy						
看護 / Nursing · 在宅医療 · 遠隔医療						
IT / InT / AI						

IT / IoT / AI

DX(Digital Transformation)

ネットワーキング交流会

講演テーマ

- ・新技術、新事業への取組紹介
- ・再生医療関係の講演会

プロジェクト企画会議

研究開発の可能性検討を目的に地元中小企業で 取り組んでいる開発テーマの紹介

成長産業育成のための研究開発支援事業(成長産業育成コンソーシアム発研究)

研究開発に補助金支給

応募資格:成長産業育成コンソーシアム4分野メンバー

補助金額:10~1000万円(補助率:定額)

募集時期:例年4月下旬~5月

【令和6年度採択研究プロジェクト】

分野	研究プロジェクト名	共同研究チーム (※下線:代表機関)	研究 期間
DX (ICT・ロボット)	微小生物等を自動把持可能な フィードバック制御式の 圧電振動ピンセットの開発	(株)ミクロブ(株)イシイフィールドサービス兵庫県立大学兵庫県立工業技術センター	令和 5~6 年度
航空·宇宙	高速推力偏向型VTOL機に向けた 低速域から高速域にわたる 高効率プロペラの研究開発	スカイリンクテクノロジーズ(株) (株)テックラボ 佐藤精機(株) 熊本大学 宇宙航空研究開発機構	令和 5~6 年度
航空·宇宙	熱可塑性CFRPを用いた 電動航空機用超高速回転モータの 要素技術開発	Yamada Power Unit(株) (株)大日製作所 神戸市立工業高等専門学校	令和 6~7 年度
環境・水素等 新エネルギー	安全な食品製造を目指す、 高機能分離膜を核とした ピュアスチーム製造装置の開発・実証	(株)テイエルブイ (株)三洋工事 広島大学	令和 6~7 年度
環境・水素等 新エネルギー	貯槽−加圧蒸発器−気化器 一体化ユニットの研究開発	(株)OKAMURA 金澤鉄工(株) 神戸大学 早稲田大学	令和 6年度

成長產業試作開発支援事業

試作開発に補助金支給

応募資格:成長産業育成コンソーシアム参加メンバー

補助金額:最大300万円(補助率:1/2)

募集時期:例年4月下旬~5月

【令和6年度採択試作開発プロジェクト】

分野	試作開発プロジェクト名	採択事業者
航空·宇宙	航空宇宙産業向けプラスチック部品に対応した、 射出成型機用HIPシリンダーの試作開発	(株)城洋
航空·宇宙	素材4130熱処理後の内径シート部の 最適加工条件の確立による生産性向上	(株)フクイ金属
環境・水素等 新エネルギー	内容物の変性を防ぐバリア性を有した ユニバーサルデザインスパウトパウチ容器の開発	アスカカンパニー(株)
環境・水素等 新エネルギー	表面処理を施工することによって 耐久性を向上させたステンレスタンクの試作開発	マルイ鍍金工業(株)
環境・水素等 新エネルギー	3kW 級燃料電池発電システムの試作開発	阪神機器(株)
健康·医療	医療・医薬分野のためのアルミレスの 国産定温輸送容器(ボックス)の開発	小泉製麻(株)
健康·医療	腹腔鏡下手術における手術時間短縮に寄与する 革新的な臓器牽引クリップの開発	金井重要工業(株)

